International Journal of Growth Factors and Stem Cells in Dentistry

ORIGINAL ARTICLE
Year
: 2020  |  Volume : 3  |  Issue : 1  |  Page : 12--17

Effect of Vitamin D3on nonmelanoma skin cancer cells: A comparative in vitro study


Eva Dohle, Pasinee Vorakulpipat, Sarah Al-Maawi, Rita Schröder, Patrick Booms, Robert Sader, Charles James Kirkpatrick, Shahram Ghanaati 
 Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, Frankfurt Orofacial Regenerative Medicine (FORM) Laboratory, University Hospital Frankfurt Goethe University, Frankfurt am Main, Germany

Correspondence Address:
Prof. Shahram Ghanaati
Department of Oral, Cranio-Maxillofacial and Facial Plastic Surgery, University Hospital Frankfurt Goethe University, 60590 Frankfurt am Main
Germany

Background: The use of Vitamin D3, as an alternative drug, combined with common therapeutic strategies to treat nonmelanoma skin cancers, has recently attracted attention. However, in vitro data on Vitamin D3action on different tumor cell lines compared to healthy cells are lacking. Aims and Objectives: In this context, the present study aimed to investigate the potential role of Vitamin D3's ability as an antitumor treatment. Materials and Methods: Cell growth, cell viability, and apoptosis as well as cell cycle distribution were comparatively assessed in a squamous cell carcinoma (SCC) cell line, a basal cell carcinoma (BCC) cell line, and healthy primary normal human epidermal keratinocytes (NHEK) in response to various Vitamin D3concentrations. Results: Tumor and healthy cells clearly responded differently to Vitamin D3application with regard to metabolic activity and apoptosis. The application of Vitamin D3reduced the metabolic activity of the BCC and SCC cancer cell lines (and not NHEK) and induced cell cycle arrest. Furthermore, Vitamin D3-mediated increased apoptosis was observed in tumor cells but not in healthy primary keratinocytes. Conclusions: Our findings indicate an antiproliferative and proapoptotic Vitamin D3-dependent effect on skin cancer cells in vitro, highlighting Vitamin D3as a potential and beneficial alternative drug for further studies with respect to possible clinical strategies to treat nonmelanoma skin cancers.


How to cite this article:
Dohle E, Vorakulpipat P, Al-Maawi S, Schröder R, Booms P, Sader R, Kirkpatrick CJ, Ghanaati S. Effect of Vitamin D3on nonmelanoma skin cancer cells: A comparative in vitro study.Int J Growth Factors Stem Cells Dent 2020;3:12-17


How to cite this URL:
Dohle E, Vorakulpipat P, Al-Maawi S, Schröder R, Booms P, Sader R, Kirkpatrick CJ, Ghanaati S. Effect of Vitamin D3on nonmelanoma skin cancer cells: A comparative in vitro study. Int J Growth Factors Stem Cells Dent [serial online] 2020 [cited 2021 Oct 23 ];3:12-17
Available from: https://www.cellsindentistry.org/article.asp?issn=2589-7330;year=2020;volume=3;issue=1;spage=12;epage=17;aulast=Dohle;type=0